
Teaching Statement
Adam Blank

Because course policies can have such a profound effect on student learning, I always begin by ensuring
my course policies are thought out and justified. I believe that every policy must have a rationale—and
that these policies must respect students as people with their own goals. I frame the styles I use to
teach with the learning outcomes of my courses. I try to help students feel comfortable and motivated,
so that they are more likely to actively participate.

Over the past N years, I have reflected on common misconceptions and difficulties that students have
when learning data structures, algorithms, discrete mathematics, and computability theory. I’ve im-
mersed myself in the practice and research of teaching. But most importantly, I’ve helped shape how
my students view computer science, and I’ve learned just as much from them in the process.

Learning Outcomes

Before designing or teaching, I’ve found it absolutely imperative to think hard about what outcomes I
am fostering in my role. Like many other scientific disciplines, the best way to learn computer science
is by understanding the why and the how, in addition to the what.

As a computer scientist, one of the most fundamental tools I have is abstraction—that is, separating
the underlying ideas from specific examples and instances. I try to help my students learn to use
abstractions both by presenting them myself and guiding students to the general ideas. For example,
some introductory data structures courses teach the idea of a tree rotation. Sometimes, this idea
is presented as a chart of the “four cases”, and students tend to memorize them. When I’ve taught
tree rotations in the past, I’ve used an analogy in which students can re-derive the “four cases”, by
pretending to lift up the node of the tree being rotated and imagining the effect of gravity.

As I teach a variety of lessons in a course, I take care to make connections to (1) the background
the students already have and (2) previous and future topics. When I teach introductory discrete math
courses for computer science, I take the for very seriously. Because programming courses are usually
a pre-requisite, I can take advantage by drawing many connections between the math we are doing and
programming.

One major misconception when students first see quantified statements is always variable scoping.
Students will often write arguments like: “We know that ∀x. x > 5; so, x cannot be 5.” Luckily, they
already understand the scoping of functions; so, I can draw a connection to a piece of (Python) code:

1 def f(x):
2 return x > 5
3 print x != 5

Students know that the print statement doesn’t make any sense, and this analogy helps them see that
the argument they made doesn’t either.

Over time, it’s become clear to me that the learning outcomes of the courses I’m involved in are rarely
limited to the topic of the course. Courses have hidden agendas, and I always try to understand
what they are and deliberately align my teaching style with them. Some re-occurring favorites include:
learning to learn, learning to work in a team, learning to deal with frustration, and learning time
management.

15-251, a second semester CS core course at CMU, nominally surveys discrete math and computability
theory. This course is traditionally very difficult. The assignments are extremely hard, and the quick
pace makes students feel like they are always behind. As I TAed this course, it became clear to me that



Teaching Statement – Adam Blank 2

none of the various topics were the main learning outcome. By assigning such difficult problems, 15-
251 forces students to work together on the homework. For many students, these problem sets are the
very first time they are forced to leave a problem unsolved. To support these hidden outcomes, I helped
students find groups for the homework, held extra “conceptual office hours” where I gave students a
second chance to see the material, and made individual meetings with students whenever they asked.
I also allowed them to struggle at times rather than immediately providing help.

Teaching Style

In addition to ensuring I have a good understanding of the learning outcomes before teaching, I ask
myself several questions to motivate how I teach. I continually re-visit these questions as there are
always more nuances to find.

Who are my students?

When deciding how to present material and which techniques to apply, I first do some research into
the students themselves. What is their background? Are they more like high schoolers? Or college
seniors? Do they like Pokémon? Or sports?

Once I have a preliminary understanding of who my students are, I make connections between the
goals and expectations of the course, and their background and needs. For instance, I designed the
course 15-131 (on basic UNIX tools, debugging, and bash scripting) to help the freshmen at CMU learn
how to use the tools they were already expected to know by their second and third CS courses.

Unfortunately, it’s very difficult to predict the background of students perfectly. I handle this issue by
frequently asking the students for feedback on the course, my teaching techniques, and assessments.
If I find a mismatch, I make drastic changes as soon as possible to make connections between the
students and the pedagogy, if necessary. This takes on many forms: adding late days, adjusting pieces
of projects, re-ordering topics to find an extra 20 minutes to give to something difficult, etc.

When I teach large courses, I often end up with large (15+ people) course staffs. I apply these same
methods in rough situations with TAs as well. In the 400+ person CS 2 at UW, there are routinely
more than 20 TAs. We ask a “poll” question at the beginning of every meeting, and I often use this
information to make changes within 20 minutes of the poll as necessary.

What does education research suggest?

One of the best sources of teaching techniques is in the education literature. I try to follow best
practices in my courses.

To support the hidden agendas of my courses, I often ask the students to work in small groups during
lecture, in recitation, and on the homework. Working in groups often allows students with varied
experiences to share, and it prepares them for the real world where they will need this skill. In my
discrete math course, I went as far as to replace one third of the lectures with workshops in which
students would solve problems in small groups and the TAs and I would roam around the room helping
them and giving them instant feedback on their work.

To help students better understand their strengths and weaknesses, I try to give students “quizzes”
which they get feedback on, but are not factored into their grade. These “quizzes” provide students
with a low stress way of testing their understanding. I try, as much as possible, to make the “quiz”
questions mirror standard exam questions—so they are study preparation as well.



Teaching Statement – Adam Blank 3

How can I align assessments with the learning outcomes?

Lecture
exposure to

abstractions,

connections,

facts, and

examples

Workshop
low-stress,

active,

collaborative

attempt to

synthesize

Recitation
re-iteration of

abstractions,

connections,

facts, and

examples

Quizzes
low-stress

identification

of issues and

concerns

Homework
more difficult,

active attempt

to synthesize

Exams
opportunity to

demonstrate

understanding

In order for students to get a deep
understanding of the course materials,
they need to be exposed to it in a vari-
ety of ways, they need to actively work
on problems, and then they need to
form bridges between the various lev-
els of abstraction. In my teaching, I
provide the students with multiple op-
portunities (lecture, recitation) for ex-
posure to the material. Then, I pro-
vide them with opportunities to prac-
tice (writing proofs, designing algo-
rithms, solving problems) with instant
feedback (workshop, quizzes). Armed
with exposure, practice, and feedback,
I ask the students to synthesize the ab-
stractions by working on their home-
work. Ultimately, I check their concep-
tual understanding on exams by giving
them more time than should be neces-
sary for every exam.

How can I use technology to supplement learning?

My research focuses on using various technologies to support learning. So, whenever possible, I try to
supplement or enhance the courses I teach using technology.

In all of the discrete math courses I’ve taught, we assign students lots of proofs to give them enough
practice with the concepts. Unfortunately, this grading is incredibly time-consuming for the TAs, and
students didn’t always receive their feedback in a timely fashion.

To combat this, I write tools to (1) eliminate human grading where possible, and (2) make human
grading more consistent and fast where possible. These tools range from web applications that allow a
number of “attempts” to a system which exploits the redundancy of grading to make it faster.

I also write tools to help students when we can’t. In our CS2 course, many students struggle with
visualising data structures and recursion. We traditionally use an IDE called jGRASP which allows
students to see what a data structure looks like in isolation. Unfortunately, these visualisations don’t
capture how references work in Java or what stack frames look like. To solve this problem, I wrote an
Eclipse plugin which gives them a visualization of the whole program as they debug it.

Conclusion

I believe that the most important impact people can have on each other is to exchange their perspec-
tives. Teaching allows me to constantly share my experiences—in computer science and life—and help
my students prepare for their futures. Every time I am able to guide a student to something new, no
matter how trivial, the impact I have made is invaluable. Teaching is a balancing act between support
and accidentally blocking discovery, and I absolutely love it.


