
Adam Blank Fall 2012Lecture 14

15
151

Mathematical Foundations for
Computer Science

15-151: Mathematical Foundations of Computer Science

Algorithm Analysis
T (n)

T (n/2)

T (n/4)

. . .

T (1)T (1)

. . .

T (1)T (1)

T (n/4)

. . .

T (1)T (1)

. . .

T (1)T (1)

T (n/2)

T (n/4)

. . .

T (1)T (1)

. . .

T (1)T (1)

T (n/4)

. . .

T (1)T (1)

. . .

T (1)T (1)

Outline

1 Merging Sorted Lists

2 What is Asymptotics?

3 Merge Sort

4 Finding The Minimum

Merge 1

Merge

Purpose: Merge two sorted lists L1 and L2 into a single sorted list L.

1 @requires(is_sorted(L1))

2 @requires(is_sorted(L2))

3 @ensures(is_sorted(result))

4 def merge(L1, L2):

5 L = []

6 while len(L1) > 0 and len(L2) > 0:

7 if L1[0] < L2[0]:

8 L.append(L1[0])

9 L1.remove(0)

10 else:

11 L.append(L2[0])

12 L2.remove(0)

13 return L + L1 + L2

How can we measure the performance of this code?

Measuring the Performance of Merge 2

1 def merge(L1, L2):

2 L = []

3 while len(L1) > 0 and len(L2) > 0:

4 if L1[0] < L2[0]:

5 L.append(L1[0])

6 L1.remove(0)

7 else:

8 L.append(L2[0])

9 L2.remove(0)

10 return L + L1 + L2

Here’s three potential measures of performance:

number of comparisons

number of array accesses

amount of space used

Let’s analyze each of these individually.

Measuring the Performance of Merge: Comparisons 3

1 def merge(L1, L2):

2 L = []

3 # The loop runs len(L1) + len(L2) times at worst

4 while len(L1) > 0 and len(L2) > 0:

5 if L1[0] < L2[0]: # This is the only comparison

6 L.append(L1[0])

7 L1.remove(0)

8 else:

9 L.append(L2[0])

10 L2.remove(0)

11 return L + L1 + L2

A comparison happens any time we test the order of two elements in the
input. How many comparisons are used in the above code?

How is this at all related to the counting we’ve been doing?

Let Cmerge(n,m) be the number of comparisons used in a call to
merge(L1, L2) where |L1|= n and |L2|= m.

Measuring the Performance of Merge: Comparisons 4

1 def merge(L1, L2):

2 L = []

3 # The loop runs len(L1) + len(L2) times at worst

4 while len(L1) > 0 and len(L2) > 0:

5 if L1[0] < L2[0]: # This is the only comparison

6 L.append(L1[0])

7 L1.remove(0)

8 else:

9 L.append(L2[0])

10 L2.remove(0)

11 return L + L1 + L2

Let Cmerge(n,m) be the number of comparisons used in a call to
merge(L1, L2) where |L1|= n and |L2|= m.
Another way of phrasing our above observation is that we’re partitioning
the comparisons based on which run of the loop they are in.
We know that there are at most n+m runs of the loop, and during each
one, we have exactly one comparison.
It follows that Cmerge(n,m)≤ n+m.

Measuring the Performance of Merge: Array Accesses 5

1 def merge(L1, L2):

2 L = []

3 # The loop runs len(L1) + len(L2) times at worst

4 while len(L1) > 0 and len(L2) > 0:

5 if L1[0] < L2[0]: # This is two array accesses

6 L.append(L1[0]) # Here’s another one

7 L1.remove(0)

8 else:

9 L.append(L2[0]) # Here’s another one

10 L2.remove(0)

11 return L + L1 + L2

Let Amerge(n,m) be the number of array accesses used in a call to
merge(L1, L2) where |L1|= n and |L2|= m.
Again, we’re partitioning based on the accesses in each iteration of the
loop and after. We know that there are at most n+m runs of the loop,
and during each one, we have exactly two accesss.
It follows that Amerge(n,m)≤ 3(n+m).

Measuring the Performance of Merge: Space 6

1 def merge(L1, L2):

2 L = []

3 # The loop runs len(L1) + len(L2) times at worst

4 while len(L1) > 0 and len(L2) > 0:

5 if L1[0] < L2[0]:

6 L.append(L1[0])

7 L1.remove(0)

8 else:

9 L.append(L2[0])

10 L2.remove(0)

11 return L + L1 + L2

Let Smerge(n,m) be the number of auxiliary bytes used in a call to
merge(L1, L2) where |L1|= n and |L2|= m.
The only new space we use is for the copy of the list. This means it’s
exactly n+m “elements” long. Supposing that each element is c bytes
large, this means Smerge(n,m) = c(n+m).

Putting It Together 7

So, we’ve determined that the performance of merge based on these
three factors is:

Cmerge(n,m)≤ n+m

Amerge(n,m)≤ 3(n+m)

Smerge(n,m) = c(n+m)

Somehow, these results are all “the same”. As n and m grow large, the
measures are all going to be “the same”.
It turns out that the fact that these are all similar is a coincidence, but
our definition of “similar” deserves more investigation.
What requirements do we need to consider two measures “similar”?

For small inputs, we don’t really care what happens.

As the inputs get large, they shouldn’t grow drastically apart.

Investigating with Pictures 8

0 200 400 600 800 1000
0

50 000

100 000

150 000

200 000

fHxL

gHxL

Should we consider these “the same”?

Investigating with Pictures 9

0 1000 2000 3000 4000
0

2´106

4´106

6´106

8´106

fHxL
gHxL

x2

Probably a good idea, since they seem to be growing at the same rate.
For reference, the function that dwarfs them both is x2.

Investigating with Pictures 2 10

0 50 100 150 200
0

5000

10 000

15 000

20 000

25 000

30 000

35 000

fHxL

gHxL

Here’s two functions, f (x) and g(x). Ultimately, g(x) will grow much
faster than f (x), but at the beginning, it is smaller.

Outline

1 Merging Sorted Lists

2 What is Asymptotics?

3 Merge Sort

4 Finding The Minimum

Asymptotics 11

When we try to really get at when two functions have the same behavior,
we’re looking at asymptotics. Here’s the formalizations of our intuitions:

Definition (Big-Oh)

We say a function f : A→ B is dominated by a function g : A→ B when:

∃(c,n0 > 0). ∀(n≥ n0). f (n)≤ cg(n)

Formally, we write this as f ∈ O(g).

Again, back to our intuition: O notation strips away the small cases and
constants. We can think of O as a sort of “upper bound”.
There’s a similar concept for “lower bound”:

Definition (Big-Omega)

We say a function f : A→ B dominates a function g : A→ B when:

∃(c,n0 > 0). ∀(n≥ n0). f (n)≥ cg(n)

Formally we write this as f ∈Ω(g).

Asymptotics 12

Finally, we can construct our concept of “the same”:

Definition (Big-Theta)

We say a function f : A→ B grows at the same rate as a function
g : A→ B when:

f ∈ O(g) and f ∈Ω(g)

Formally we write this as f ∈Θ(g).

Some “gotchas”:

O(f),Ω(f), and Θ(f) are sets! This means we should treat them as
such.

If we know f (n) ∈ O(n), then it is also the case that f (n) ∈ O(n2),
and f (n) ∈ O(n3), etc.

Remember that small cases, really don’t matter. As long as it’s
eventually an upper/lower bound, it fits the definition.

The constants do not have to be the same for O and Ω to prove Θ.
For instance, if we know for all n≥ 1 that: (1) f ≤ 2n and (2) f ≥ n,
then f ∈Θ(n).

Moving Backwards 13

Here’s the results of our analysis from before:

Cmerge(n,m)≤ n+m

Amerge(n,m)≤ 3(n+m)

Smerge(n,m) = c(n+m)

Rephrasing our results in terms of Asymptotics, we get:

Cmerge(n,m) ∈ O(n+m)

Amerge(n,m) ∈ O(n+m)

Smerge(n,m) ∈Θ(n+m)

Outline

1 Merging Sorted Lists

2 What is Asymptotics?

3 Merge Sort

4 Finding The Minimum

Merge Sort 14

Merge Sort

Purpose: Return the list L in sorted order.

1 def sort(L):

2 if len(L) < 2:

3 return L

4 else:

5 return merge(sort(FirstHalf(L)), sort(SecondHalf(L)))

Let’s look at the same three metrics again:

Let Cmergesort(n) be the number of comparisons used in a call to
sort(L) where |L|= n.

Let Amergesort(n) be the number of array accesses used in a call to
sort(L) where |L|= n.

Let Smergesort(n) be the number of auxiliary bytes used in a call to
sort(L) where |L|= n.

Merge Sort: Comparisons 15

1 def sort(L):

2 if len(L) < 2:

3 return L

4 else:

5 return merge(sort(FirstHalf(L)), sort(SecondHalf(L)))

Let Cmergesort(n) be the number of comparisons used in a call to sort(L)

where |L|= n.

If n = 0, n = 1, we have

Cmergesort(n)= n (Note: We assume 1 comparison for n = 1 for convenience)

Otherwise, we have

Cmergesort(n) =Cmergesort

(n
2

)
+Cmergesort

(n
2

)
+Cmerge

(n
2
,

n
2

)
We can justify this recurrence combinatorially: every time we call merge
sort, we do the comparisons for the left half of the list, we do the
comparisons for the right half, and we do the comparisons to merge.

Merge Sort: Dealing with A Recurrence 16

Let Cmergesort(n) be the number of comparisons used in a call to sort(L)

where |L|= n.

Cmergesort(n)=

0 if n = 0
1 if n = 1
Cmergesort

(n
2

)
+Cmergesort

(n
2

)
+Cmerge

(n
2 ,

n
2

)
otherwise

Recall that, before, we proved that Cmerge(n,m)≤ n+m. So, we can
simplify the recurrence:

Cmergesort(n)≤

0 if n = 0
1 if n = 1
2Cmergesort

(n
2

)
+n otherwise

Now, we’d like to solve this recurrence. One of the cleaner ways is to
view the process as a tree.

Merge Sort: Solving the Recurrence 17

Cmergesort(n)≤

0 if n = 0
1 if n = 1
2Cmergesort

(n
2

)
+n otherwise

C(n)

Merge Sort: Solving the Recurrence 18

Cmergesort(n)≤

0 if n = 0
1 if n = 1
2Cmergesort

(n
2

)
+n otherwise

n

C(n/2)C(n/2)

Merge Sort: Solving the Recurrence 19

Cmergesort(n)≤

0 if n = 0
1 if n = 1
2Cmergesort

(n
2

)
+n otherwise

n

n/2

C(n/4)C(n/4)

n/2

C(n/4)C(n/4)

Merge Sort: Solving the Recurrence 20

Cmergesort(n)≤

0 if n = 0
1 if n = 1
2Cmergesort

(n
2

)
+n otherwise

n

n/2

n/4

. . .

C(1)C(1)

. . .

C(1)C(1)

n/4

. . .

C(1)C(1)

. . .

C(1)C(1)

n/2

n/4

. . .

C(1)C(1)

. . .

C(1)C(1)

n/4

. . .

C(1)C(1)

. . .

C(1)C(1)

Merge Sort: Solving the Recurrence 21

Cmergesort(n)≤

0 if n = 0
1 if n = 1
2Cmergesort

(n
2

)
+n otherwise

log2(n)

n

n/2

n/4

. . .

11

. . .

11

n/4

. . .

11

. . .

11

n/2

n/4

. . .

11

. . .

11

n/4

. . .

11

. . .

11

n

n

n

n

n

Since the recursion tree has height log2(n) and each row does n work, it
follows that Cmergesort ∈ O(n log2(n)). But that’s not a proof...

Merge Sort: Proving the Closed Form 22

To prove the closed form for the recurrence we found, we would do an
induction proof.

It’s straight-forward and boring; so, I’m going to skip it.

The same analysis we did for comparisons works for array accesses and
auxiliary bytes as well.

Outline

1 Merging Sorted Lists

2 What is Asymptotics?

3 Merge Sort

4 Finding The Minimum

Finding The Minimum 23

Minimum Element

Purpose: Return the element of the list L that is smallest.

1 @requires(len(L) > 0)

2 def min(L):

3 if len(L) == 1: return L[0]

4 min1, min2 = min(FirstHalf(L)), min(SecondHalf(L))

5 if min1 < min2: return min1

6 else: return min2

Let Cmin(n) be the number of comparisons used in a call to min(L) where
|L|= n. We note that if n > 1, then Cmin(n) =Cmin

(n
2

)
+Cmin

(n
2

)
+1.

This is because the only three operations that use comparisons are calling
min recursively on the left and right (each of size n/2), and doing the
one comparison on their results. So, our recurrence is:

Cmin(n)≤

{
1 if n = 1
2Cmin

(n
2

)
+1 otherwise

Finding the Minimum: Solving the Recurrence 24

Cmin(n)≤

{
1 if n = 1
2Cmin

(n
2

)
+1 otherwise

log2(n)

1

1

1

. . .

11

. . .

11

1

. . .

11

. . .

11

1

1

. . .

11

. . .

11

1

. . .

11

. . .

11

1

2

4

2i

n

That is,
log2(n)

∑
i=0

2i =
1−2log2(n)+1

1−2
= 2(2log2(n))−1 = 2n−1 ∈ O(n)

	Merging Sorted Lists
	What is Asymptotics?
	Merge Sort
	Finding The Minimum

