Lecture 9



### Mathematical Foundations for Computer Science

15-151: Mathematical Foundations of Computer Science

## **Functions**

# $f: U \to N$

#### Outline

1 Definitions





#### **Random Number Generator**

#### Question

Suppose we have a RNG  $\mathscr{R}$  that will give us a random number in [n] (each with equal probability). We'd really like a RNG f that will give us a random number in  $\{0, 1, \ldots, n-1\}$  instead. How can we get this?

#### Answer

Suppose *R* is a value that  $\mathscr{R}$  has generated. There are a lot of possible answers. Here's two of them:

$$f(R) = R - 1$$

$$f(R) = n - R$$

#### Important Take-Aways

- The possible inputs and possible outputs are part of the function definition itself.
- A function is a "map" that assigns a single output to each input.

#### A "Functional" Definition

To define a function, we need to specify three things:

Domain The set of possible inputs.

Co-Domain The set of possible outputs.

Operation The "rule" that maps the inputs to the outputs.

We can specify the first two of these by writing:

 $f: A \to B$ 

("Define f as a function from A to B")

We have two options to define the operation: a rule and a program

#### One Rule to Define Them All

Defining a function via "a rule" is what you've seen before. For instance, to define the function f from the previous slide, we could do:

$$f: [n] \rightarrow [n-1] \cup \{0\}$$
  
 $R \mapsto R-1$ 

Note that  $\rightarrow$  and  $\mapsto$  are different arrows! The first defines the type of a function and the second defines the rule.

We can also define functions on the reals. Like...

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2 + 1$$

#### **Programs are Functions**

We can also define the "operation" part of the function by writing a program.

```
Define f: \mathbb{N} \to \mathscr{P}(\mathbb{N}) by

f(x) :=

S := Ø

for i \to x:

if even(i):

S := S \cup \{i\}

return S
```

#### A Picture's Worth A Thousand Outputs

Let  $f: A \rightarrow B$  be a function.

Definition (Image)

We define the **image of** X **under** f as

 $\mathsf{img}_f(X) = \{f(x) \mid x \in X\}$ 

That is,  $img_f(X)$  is "the set of outputs pointed to by something in X."

So, since A is the domain,  $img_f(A)$  is all of the achievable outputs of f.

Note that  $img_f(A) \subseteq B$  is always true, but it is not necessarily the case that  $img_f(A) = B$ .

One more thing: you may have seen the term "range" before. Unfortunately, some high schools use "range" to mean codomain and others use it to mean  $\operatorname{img}_{f}(A)$ . So, we will not use this term.

#### **Identify Me!**

Let S be an arbitrary and fixed set. We give one more function definition:

Definition (Identity Function)

The Identity Function on the set S is defined as

$$I_S: S \rightarrow S$$

 $x \mapsto x$ 

#### Outline



2 Properties



#### **Functional Pre-requisites**

Let  $f: A \rightarrow B$  be a function.

Definition (Totality)

We say f is **total** iff

 $\forall (x \in A). \exists (y \in B). y = f(x)$ 

Informally, f is total if there is at least one output for each input.

Unless otherwise specified, we will assume that totality is a pre-requisite to being a function. That is, if f is not total, then it is not a function.

Definition (Single-valuedness)

We say that f is **single valued** iff

 $\forall (x \in A). \ \forall (y_1, y_2 \in B). \ ((f(x) = y_1 \land f(x) = y_2) \implies y_1 = y_2)$ 

Informally, f is single valued if there is **at most** one output for each input.

If f is not single-valued, then f is not a function.

#### A Game

#### Question

Imagine we have a friend who has given us a function  $g: \mathbb{N} \to \mathbb{N}$ . He claims that if we give him g(N) for some  $N \in \mathbb{N}$ , he can tell us what N originally was. Can he?

#### Answer

It depends on g. This would fail if... g ever maps two numbers to the same output.

#### Definition (Injectivity)

Let  $f: A \rightarrow B$  be a function. We say if is **injective** iff

$$\forall (x_1, x_2 \in A). f(x_1) = f(x_2) \implies x_1 = x_2$$

Informally, f is injective if there is **at most** one input that maps to each output.

#### Question

We decide to be sneaky. Instead of actually choosing an N and giving our friend g(N), we just randomly choose  $X \in \mathbb{N}$  and give that. Can our friend still find an N?

#### Answer

It still depends on g. Now, in addition to g not being allowed to map two numbers to the same output, it must also be the case that g maps **some** input to every output.

#### Definition (Surjectivity)

Let  $f: A \rightarrow B$  be a function. We say if is **surjective** iff

$$\forall (y \in B). \exists (x \in A). y = f(x)$$

Informally, f is surjective if there is **at least** one input that maps to each output.

#### **Switching Perspectives**

#### Question

Suppose we tried to replace  $g: \mathbb{N} \to \mathbb{N}$  with

$$h:\mathscr{P}([15151])\to \left[2^{15151}\right]$$

Could our friend find a function h that he can use to get back our input?

#### Answer

Yup. Consider the function that maps 
$$S \mapsto 1 + \sum_{x \in S} 2^{x-1}$$

#### Important Take-Aways

- Since h allows us to get the input back, we have h is injective and surjective.(We would normally prove this! But we will assume it for now...)
- We can conclude that  $|\mathscr{P}([15151])| = |[2^{15151}]|$  from the **existence** of such a function! Think about why.

#### Definition (Bijectivity)

Let  $f: A \to B$  be a function. We say if is **bijective** iff it is injective and surjective.

Consider the following functions from  $\mathbb{R} \to \mathbb{R}$ . Are they injective? surjective? bijective?

| • $x \mapsto x^2$     | Injective? | X | Surjective? | × | Bijective? | X |
|-----------------------|------------|---|-------------|---|------------|---|
| • $x \mapsto x^3 - x$ | Injective? | X | Surjective? | ✓ | Bijective? | X |
| • $x \mapsto e^x$     | Injective? | ✓ | Surjective? | × | Bijective? | X |
| • $x \mapsto x^3$     | Injective? | ✓ | Surjective? | ✓ | Bijective? | ✓ |

#### Too Cool for Kelvin

#### Question

We don't remember how to convert between types of temperatures, but we do have two compiled C functions:

- F2C which takes in a temperature in Fahrenheit and outputs the corresponding temperature in Celsius.
- C2K which takes in a temperature in Celsius and outputs a temperature in Kelvin.

We need a function F2K that takes in a Fahrenheit temperature and outputs a Kelvin one. If we were allowed to see the source code for **one** of these functions, could we write F2K?

#### Answer

Yes. We'd want the source code for C2K. Then, we can "reverse" it to get a function K2C (this "reversal" process is the same one our friend used-the two properties we need **do** happen to be true here). Then, to construct F2K(x), we'd just call K2C(F2K(x)).

#### Outline





3 Compositions

#### **Function Composition**

Since functions just transform their input into some output, it's very common to chain them together.

With the temperature example, we combined several temperature transformations into one larger one.

Let  $f: A \rightarrow B$  and  $g: B \rightarrow C$  be functions.

```
Definition (Composition)
```

The **composition** of f and g is defined as

 $\begin{array}{ccccc} g \circ f : & A & \to & C \\ & & & x & \mapsto & g(f(x)) \end{array}$ 

We pronounce  $g \circ f$  as "g after f".

We must have codomain(f) = domain(g) for  $g \circ f$  to make sense. In particular,  $g \circ f$  and  $f \circ g$  are very different functions. The latter only makes sense when A = C.

#### oing Examples

Consider the functions:  $S: \mathbb{N} \to \mathbb{N}$ , where  $S(x) = x^2$  $D: \mathbb{N} \to \mathbb{N}$ , where D(x) = 2x

What are each of the following?

S  $\circ$  D is  $x \mapsto (2x)^2$  (or  $x \mapsto 4x^2$ ) D  $\circ$  S is  $x \mapsto 2x^2$ S  $\circ$  S is  $x \mapsto x^4$ 

#### **Composition is Associative**

Let  $f: A \rightarrow B$ ,  $g: B \rightarrow C$ , and  $h: C \rightarrow D$  be three functions. Then,

 $(h\circ g)\circ f=h\circ (g\circ f)$ 

That is, function composition is associative. This is an incredibly important fact that is often useful.

#### $f \circ g$ is a function

When working with composition, be very careful with notation. If we have functions  $f:A\to B$  and  $g:B\to C.$  .

- $f \circ g$  is probably not what you meant.
- $f(x) \in B$ ; so,  $g \circ f(x)$  is gibberish!

#### Function "Reversal"

When we talk about "reversing" a function  $f: A \rightarrow B$ , what we mean is "swapping the input and output". This is, of course, the idea of an inverse function which you may have seen before.

Definition (Inverse Function)

We say  $g: B \to A$  is the **inverse** of  $f: A \to B$  iff

$$\forall (a \in A). (g \circ f)(a) = a$$

$$\forall (b \in B). (f \circ g)(b) = b$$

If g is the inverse of f, we write  $g = f^{-1}$ .

**Interestingly:** f is bijective  $\iff f$  is invertible. You will prove this later.

Next Time

## Some Related Material

## our Esmily Mombo

 $\setminus$ 

## Your Family Members