
Adam Blank Spring 2013Lecture 0x12

15
251

Great Theoretical Ideas in
Computer Science



15-251: Great Theoretical Ideas in Computer Science

Finite State Machines I

q0 q1 q2 q3

qgarbage

w

h,e

h

w,e

e

w,h

e

w,h

w,h,e



Outline

1 Turing Machines and Decidability

2 Dumbing Down A Turing Machine

3 Regular Languages

4 Is Everything Regular?

5 Regular Constructions

6 Regular Languages are...important?



Review 1

A Language is a set of strings.
We can list out all programs. We use the notation ⟨P⟩ to mean “the
number representing the program P”.

There are many models of computation:

Models of Computation
You’ve already seen register machines.
You will see Lambda Calculus next week.
We’ll discuss several more today, including Turing Machines!

The main question we’ve discussed so far is:

For a particular language L, is L decidable?



Decidability 2

Our picture so far:
All

The halting problem

Decidable
N

Semi-decidable



A Simple Program 3

Let’s consider the following code:
1 # Input: bnbn−1bn−2⋯b2b1b0
2 low = 0
3 hi = n
4 while low < hi:
5 if blow != bhi:
6 return false
7 low++
8 hi−−
9 return true

Okay, now let’s pretend that our input is given as a stream. So, we can
only read from left to right, and once we’ve consumed a bit, it’s gone:

Input: 0 1 1 0 1 0 1 1 0 1 ⋯
→

We’re also explicitly given memory to work with. Think of it as a linked
list, where each node has a bit or is blank. It starts out empty.

Work: ⋯
↑



New Machine, new program 4

Input: 0 1 1 0 1 0 1 1 0 1 ⋯
→

Work: ⋯
↑

Copy the input to the work tape:

Work: 0 1 1 0 1 0 1 1 0 1 ⋯
↑

Erase the last bit, go to the front, and check that it’s the same:

Work: 0 1 1 0 1 0 1 1 0 ⋯
↑

If it isn’t, return false. If it is, go back to the end and repeat step
(2):

Work: 1 1 0 1 0 1 1 0 ⋯
↑

We could just write another program to do this, but let’s write a flow
chart instead.



New Machine, new����
��:flowchartprogram 5

Input: 0 1 1 0 1 0 1 1 0 1 ⋯
→

Work: ⋯
↑

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶



This is a Turing Machine! 6

Some infinite tapes: (how many doesn’t matter; one tape for input and work, etc.)

Input: 0 1 1 0 1 0 1 1 0 1 ⋯
→

Work: ⋯
↑

A finite-state controller:

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶

That’s it. These things can decide exactly the same languages as register
machines, and lambda calculus, and...LATEX.



Chomsky Hierarchy 7

All
{⟨P⟩ ∣ P does not halt}

Semi-decidable
{⟨P⟩ ∣ P does halt}

Decidable
???

Finite
{a,b,c}



Like a TM, but Stupider 8

Remember, a Turing Machine has three pieces: an input tape, a work
tape, and a controller:

Input: 0 1 1 0 1 0 1 1 0 1 ⋯
→

Work: ⋯
↑

Read
Input

Erase
and

Store

Match
0

Match
1

At Left,
Match 0

At Left,
Match 1

fail Goto
End

accept

input 0
�0, ▶

input 1
�1, ▶

input ◻

◀

rea
d 0

�
◻
, ◀

read 1�
◻,
◀

read ◻

read 0,1
◀

read ◻

▶

read 0,1
◀

read ◻

▶

read 0
�
◻, ▶

read
1re

ad
◻

read 1

�
◻, ▶

rea
d 0

read
◻

read ◻

◀

read 0,1
▶

If we wanted something dumber than a TM, but not quite as dumb as a
decider for finite sets, what could we do?

Kill the “work” tape!



Chomsky Hierarchy 9

All
{⟨P⟩ ∣ P does not halt}

Semi-decidable
{⟨P⟩ ∣ P does halt}

Decidable

???

Regular

???

Finite
{a,b,c}



Deterministic Finite Automata 10

A Deterministic Finite Automaton (or DFA) is a TM which reads exactly
one character of the input on each transition. It has no work tape; so, it
can’t write anything down; so, this definition makes sense.

Like before, we denote the start state with a lone arrow:

q0

and accept states are double circles:

qa

We also specify an alphabet that strings may range over: Σ = {0,1}
(before we had ◻ as an additional symbol).
Here’s the simplest two DFAs:

q0

0,1

q0

0,1



Deterministic Finite Automata 11

We say that the language of a machine M, written L(M) is the set of
strings it accepts.

M1 M2

q0

0,1

q0

0,1

L(M1) =∅ L(M2) = Σ∗

BTW, if A is a set, A∗ is called the Kleene Closure of A.

A∗ = A0∪A1∪A2∪⋯



DFAs, formally 12

Definition (DFA)
A DFA M is a 5-tuple:

M = (Q,Σ,δ ,q0,F)

where δ ∶Q×Σ→Q, q0 ∈Q, F ⊆Q

Q is a finite set of states
Σ is a finite alphabet
δ is a transition function between states
q0 is the start state
F is a set of final states

And you don’t have to draw them manually:
https://whiteboard.ddt.cs.cmu.edu/dfas/latex

Note that δ ∶Q×Σ→Q takes a character as its second argument. It
would be nicer if it took in a string. We will assume that δ ∶Q×Σ

∗→Q
does the right thing. That is,

δ(q,x0x1⋯xn) = δ(δ(⋯δ(δ(q,x0),x1)⋯,xn−1),xn)

https://whiteboard.ddt.cs.cmu.edu/dfas/latex


Parity Checking 13

Let Leven = {x ∈ {0,1}∗ ∣ x, interpreted as binary, is even}.
Find a DFA Meven, such that L(Meven) = Leven.

How about this one?

even odd1

0

0

1

Okay, better.

initial even odd

1

0

1

0

0

1



Limited a’s 14

Let L3a’s = {x ∈ {a,b,c}∗ ∣ x has no more than 3 a’s}.

Find a DFA M3a’s, such that L(M3a’s) = L3a’s.

Here we go!

0a’s 1a 2a’s 3a’s
more
than
3a’s

b,c

a

b,c

a

b,c

a

b,c

a

a,b,c



ab = ba 15

Let Lab = ba = {x ∈ {a,b}∗ ∣ x has an equal # of substrings “ab”, “ba”}.

Find a DFA Mab = ba, such that L(Mab = ba) = Lab = ba.

Here it is!

initial

last
seen a

last
seen b

more
ab’s

more
ba’s

a

b

a

b

b

a

b

a

a

b



ab = ba, Take 2 16

Let L′ab = ba = {x ∈ {a,b,c}
∗ ∣ x has an equal # of substrings “ab”, “ba”}.

Find a DFA M′

ab = ba, such that L(M′

ab = ba) = L′ab = ba.

Uh oh. Well, if you can’t find something, maybe it doesn’t exist. . .

Proving a Language L is not Regular
Assume it is regular. Therefore, there exists some machine M such
that L(M) = L.
It’s a finite state machine. . . so, let’s say it has n states.
Our goal is to show that this machine is broken. What does it mean
for a DFA to be broken?

Well, we can basically attack the states or the transition function. Which
seems more useful?
Insight: The transition function is complicated. But the states have one
bit of information. Either they accept, or not.

Well. . . what if some state s did both!



Proving Irregularity 17

Proving a Language L is not Regular
Assume it is regular. Therefore, there exists some machine M such
that L(M) = L.
It’s a finite state machine. . . so, let’s say it has n states.
We want to make the machine tell us that some state s both
accepts and rejects.
Feed the machine a ton of strings. How many? n+1, because then
two of them must end in the same state, by pigeonhole.
Now, we have S1 and S2, where δ(q0,S1) = δ(q0,S2). So, what?
Choose one string X so that S1X should be accepted, but S2X
shouldn’t be.
Then we get a contradiction, because

δ(q0,S1X) = δ(δ(q0,S1),X) = δ(δ(q0,S2),X) = δ(q0,S2X)



Now, we prove it! 18

Let L′ab = ba = {x ∈ {a,b,c}
∗ ∣ x has an equal # of substrings “ab”, “ba”}.

Proving L′ab = ba is not Regular
Assume it is regular. Therefore, there exists some machine M such
that L(M) = L. And M has n states.
Feed the machine n+1 strings. The string we add onto the end
can only have one number of ab’s and one number of ba’s.



Now, we prove it! 19

Let L′ab = ba = {x ∈ {a,b,c}
∗ ∣ x has an equal # of substrings “ab”, “ba”}.

Proving L′ab = ba is not Regular
Assume it is regular. Therefore, there exists some machine M such
that L(M) = L. And M has n states.
Feed the machine n+1 strings. Consider {(abc)k ∣ k ∈N}. Also,
∞ > n.
Now, we have (abc)x and (abc)y, where
δ(q0,(abc)x) = δ(q0,(abc)y), and x ≠ y by pigeonhole.
Choose one string X so that (abc)xX should be accepted, but
(abc)yX shouldn’t be. Let’s try X = (bac)x.
Then we get a contradiction, because

δ(q0,(abc)x(bac)x) = δ(q0,(abc)y(bac)x)

That is, (abc)x(bac)x ∈ L, and (abc)y(bac)x /∈ L. So,
δ(q0,(abc)x(bac)x) must be accepting and rejecting! That’s
obviously not possible.



Chomsky Hierarchy 20

All
{⟨P⟩ ∣ P does not halt}

Semi-decidable
{⟨P⟩ ∣ P does halt}

Decidable

{anbn ∣ n ∈N}

Regular

{a,aa,aaa, . . .}

Finite
{a,b,c}



Union Construction 21

Suppose we have a regular language L1 and another regular language
L2. How do we construct a machine M such that L(M) = L1∪L2?

Idea!
We have DFAs for L1 and L2; call them M1 and M2. We can run both
machines at the same time.

L1 and L2

even odd1

0

0

1

Initial

Got 0

Got 1

0

1

0,1

0,1

To run these machines at the same time, we “keep a finger” on a state in
each machine. If either one accepts, our new machine should too.



Union Construction 22

L1:
even odd1

0

0

1

L2:
Initial

Got 0

Got 1

0

1

0,1

0,1

How can we make a DFA out of this idea? Make a new DFA, where each
state is made of one state from the left and one state from the right.

L1∪L2: even
Initial

even
Got 0

even
Got 1

odd
Got 0

odd
Got 1

odd
Initial

0

1

0

1

0

1

0

1

1

0

1

0



Union Construction, formally 23

If we have two DFAs

M1 = (Q1,Σ,δ1,q0,F1) M2 = (Q2,Σ,δ2,q′0,F2)

then we can construct a DFA M1∪M2 such that

L(M1∪M2) =L(M1)∪L(M2)

as follows:

M1∪M2 = (Q1×Q2,Σ,δ∪,(q0,q′0),{(q1,q2) ∈Q1×Q2 ∣ q1 ∈ F1∨q2 ∈ F2})

where
δ∪((q1,q2),σ) = (δ1(q1,σ),δ2(q2,σ))

Can we do intersection?



Let’s look at what we can do. . . 24

1 DFAs can match any set of finite strings, S.
2 DFAs can match the Kleene Closure of a set of characters, Σ

∗

3 DFAs can match the union of two sets of strings, S1∪S2.
4 DFAs can match one arbitrary character, ?
5 DFAs can match the concatenation of two sets of strings, S1 ⋅S2.

Suppose I have a long piece of text, say

The History of Twitch Plays Pokemon: Generation 1

Let’s use the notation [a-z] = {a,b,⋯,y,z}, etc.
1 {p,P} ⋅ ok ⋅ ? ⋅ [a-z] ⋅ [a-z]*
2 pik ⋅ {a}*
3 DUX
4 {A,B,C,D} ⋅ {A,B,C,D}*

({p,P} ⋅ ok ⋅ ? ⋅ [a-z] ⋅ [a-z]*) ∪ (pik ⋅ {a}*) ∪ (DUX) ∪ ({A,B,C,D} ⋅ {A,B,C,D}*)

[pP]ok.[a-z][a-z]*\|pika*\|DUX\|[ABCD][ABCD]*\)[,.:]*

What we’re doing is actually grep!



Next Time 25

The Smaller the Better?

∨

SFMs


	Turing Machines and Decidability
	Dumbing Down A Turing Machine
	Regular Languages
	Is Everything Regular?
	Regular Constructions
	Regular Languages are...important?

