
Adam Blank February 11, 2014{SetØy}

{SetØy}: It’s sets all the
way down!

Outline

1 Introduction

2 {SetØy} in Practice

Outline

1 Introduction

2 {SetØy} in Practice

What is {SetØy}? 1

{SetØy} is a programming language (just like Python or C0). In most
languages, you have a varied set of primitive types (int, float, string,
boolean). In {SetØy}, as you might have guessed, the only primitive type
is set!

Background 2

Logic and Sets are two of the early topics in most introductory discrete
math courses. Here’s a bunch of problems students routinely run into:

They seem very unmotivated

It’s very hard to test understanding

It’s hard to learn the language

They often don’t even realize there is a ”grammar”!

Complicated constructions (powerset, cartesian product) feel
unmotivated and are hard to understand

They don’t understand the difference between predicates and
functions! Or how to define them!

Introducing {SetØy} 3

{SetØy} is an attempt to fix these problems by giving students a
computational environment for mathematical language.

I have a functioning {SetØy} compiler.

There’s a couple of angles I am approaching this from as research:

Set-based languages are relatively untapped in the compilers
community.

Ideally, we’ll be able to show that {SetØy} helps students do better
with some of the issues I mentioned previously.

Today 4

I have thought of a progression of several {SetØy}exercises that I believe
will help students with the problems they usually run into. I’d like us to
go through some of the exercises and attempt/discuss them.

Getting Everyone Set up! 5

First, ssh to unix.andrew.cmu.edu and add {SetØy} to your path.

1 ssh AndrewID@unix.andrew.cmu.edu

2 export PATH=/afs/cs.cmu.edu/academic/class/15151-f12/bin:$PATH

Now, you should be able to run {SetØy} by using the setty command.

Basic Sets in {SetØy} 6

1 # Comments in setty begin with hash symbols (like python)

2 # We can print sets using print and @ represents the empty set.

3 print @

4 print {@}

5 print {{@}}

1 # Setty sets come equipped with the normal set operations:

2 print @ union @

3 print {@} intersect @

4 print {@, {@}} minus {@}

Question

(a) Find two sets A and B that demonstrate that {SetØy} sets remove
duplicates.

(b) Find two sets C and D that demonstrate that {SetØy} sets are
unordered.

“Unary” Set Operations 7

In addition to the “normal” set operations, {SetØy} supports unary
versions.

The idea is that we can union (or intersect) all the elements of a set to
get a new set.

For instance, ⋃
x,y,z = x∪ y∪ z

Question

Consider the following set expressions (where a is an arbitrary set):⋃
∅

⋂
∅

⋃
{a}

⋂
{a}

⋃
{∅,∅}

⋂
{∅,{∅}}

What do they evaluate to? Use {SetØy} to check your answers and
understanding.

Definitions 8

1 # When we’re doing mathematics, we will often need to define

2 # variables, functions, and boolean tests. This is easy in \Setty{}

3 empty := @

4 print empty

5

6 # Here’s a function:

7 single(x) := {x}

8 print single({{@}})

9

10 # Here’s a boolean test

11 has_empty(x) := @ in x

12 print has_empty(@)

13 print has_empty({@})

Natural Numbers 9

Background

Since the only objects we have in setty are sets, it would be nice if we
could somehow define numbers in terms of sets. The big take-away is

We can make everything we need for programming from just sets!

The Von Neumann definition of the natural numbers as sets is the
following:

0 is ∅
n+1 is n∪{n}

Question

{SetØy} has been designed to let you use numbers once you’ve defined
what the naturals are.
Define zero(n) and succ(n) using the Von Neumann definition.

(Here’s a gotcha: zero must take an argument because {SetØy} insists
every function have exactly one argument. When implementing zero,
just ignore the argument.)

Natural Numbers Continued 10

Now that you have defined numbers, let’s explore them. First, {SetØy}
has a command numerals_on which will make it display numbers instead
of sets whenever it can. It won’t work if you haven’t defined naturals
though!

Question

Write a program for less-than x by doing the following:

1 zero(n) := <your definition>

2 succ(n) := <your definition>

3 numerals_on

4

5 x := 10

6 ltx(y) := <define this>

7 print ltx(7)

8 print ltx(100)

Pairs 11

Wouldn’t it be great if we could give our functions multiple arguments?
Let’s define what the ordered pair, (x,y) means as a set.
The Kuratowski definition is (x,y) := {{x},{x,y}}.
In addition to the “pairing” function, we need to define two more:

π1((x,y)) = x, and

π2((x,y)) = y

Question

(a) Fill in the following code. Don’t worry too much about pi2.

1 (x, y) := {{x}, {x,y}}

2 pi1(p) := <fill this in>

3 pi2(p) := union {x in (union p) |

4 (x not in {pi1(p)}) or

5 forall (y in (union p)). y in {pi1(p)}}

6 pi2bad(p) := (union p) minus {pi1(p)}

(b) pi2bad doesn’t actually work! Which pairs does it fail on?

Logical Statements 12

{SetØy} comes with and, or, and not built in.

Question

Write a logical test implies((x,y)) and test it with:

1 print T implies T

2 print T implies F

3 print F implies T

4 print F implies F

{SetØy} also supports ∀ and ∃. For instance,

1 print forall (x in [5]). x in 6

2 print exists (x in [5]). x in 3

Question

Define a predicate isprime(x) which tests if x is prime.

(You could, in theory, implement + and ×, but {SetØy} also has them
built in.)

	Introduction
	{Sety} in Practice

